An innovative filtering material may soon reduce the environmental cost of manufacturing plastic. Created by a team including scientists at the National Institute of Standards and Technology (NIST), the advance can extract the key ingredient in the most common form of plastic from a mixture of other chemicals—while consuming far less energy than usual.

The material is a metal-organic framework (MOF), a class of substances that have repeatedly demonstrated a talent for separating individual hydrocarbons from the soup of organic molecules produced by oil refining processes. MOFs hold immense value for the plastic and petroleum industries because of this capability, which could allow manufacturers to perform these separations far more cheaply than standard oil-refinement techniques.



This promise has made MOFs the subject of intense study at NIST and elsewhere, leading to MOFs that can separate different octanes of gasoline and speed up complex chemical reactions. One major goal has proved elusive, though: an industrially preferred method for wringing out ethylene—the molecule needed to create polyethylene, the plastic used to make shopping bags and other everyday containers.

  more...
by Katie Bohn

UNIVERSITY PARK, Pa. — The mechanics behind how an important process within the cell traps material before recycling it has puzzled scientists for years. But Penn State researchers have gained new insight into how this process seals off waste, much like a trash bag.

The process, called autophagy, allows cell waste and damaged material in the cell to be recycled into energy or new proteins. But while scientists know that a membrane called the phagophore must close around this waste material before it can be recycled, the exact mechanisms behind how these membranes close has been a mystery.

  more...
New NIST Research Could Bring Down the Cost of Making Nickels

Nickels are ubiquitous in American life, tumbling around in pockets, rolling under car seats, and emerging from the back of dryers to be used over and over for countless purchases. But these resilient and somewhat humble-looking coins are also becoming costly to produce. Nickel, the coin’s own namesake, has become a prized ingredient in many modern products, pushing the market value so much that sometimes making the five-cent coin costs as much as seven cents a pop.

  more...
UNIVERSITY PARK, Pa. -- A team led by Penn State's Applied Research Laboratory, in collaboration with the Center for Innovative Processing thru Direct Digital Deposition (CIMP-3D), has received a $1.4 million grant by the Air Force Research Laboratory (AFRL) to examine the random flaws that arise during the process of powder bed fusion additive manufacturing (PBFAM).

  more...
UNIVERSITY PARK, Pa. — A biomimetic nanosystem can deliver therapeutic proteins to selectively target cancerous tumors, according to a team of Penn State researchers.

Using a protein toxin called gelonin from a plant found in the Himalayan mountains, the researchers caged the proteins in self-assembled metal-organic framework (MOF) nanoparticles to protect them from the body’s immune system. To enhance the longevity of the drug in the bloodstream and to selectively target the tumor, the team cloaked the MOF in a coating made from cells from the tumor itself.

  more...
UNIVERSITY PARK, Pa. — Bioengineers may be able to use the unique mechanical properties of diseased cells, such as metastatic cancer cells, to help improve delivery of drug treatments to the targeted cells, according to a team of researchers at Penn State.

Many labs around the world are developing nanoparticle-based, drug delivery systems to selectively target tumors. They rely on a key-and-lock system in which protein keys on the surface of the nanoparticle click into the locks of a highly expressed protein on the surface of the cancer cell. The cell membrane then wraps around the nanoparticle and ingests it. If enough of the nanoparticles and their drug cargo is ingested, the cancer cell will die.

  more...
Search News

Arizona Free Press

Click on "Latest Threads" above
for additional articles.

Physical Address

A government big enough to give you everything you want, is strong enough to take everything you have. -Thomas Jefferson

Mailing Address

550 N. Willow St.
Globe, AZ 85501