GAITHERSBURG, Md.—U.S. economic growth and national security depend on the approximately $150 billion invested annually in federal research and development (R&D) funding. To ensure that investment reaps the largest commercial and economic returns possible, the U.S. Commerce Department’s National Institute of Standards and Technology (NIST) and the White House Office of Science and Technology Policy (OSTP) are co-leading the Lab-to-Market Cross Agency Priority goal, part of the recently released President’s Management Agenda (link is external). To accelerate these efforts, NIST has launched an initiative to improve federal technology transfer.

By: Scott Glancy

For this past Christmas my wife, Rebecca, gave me a T-shirt that says "Quantum mechanics: The dreams stuff is made of." This is an allusion to the book The Dreams That Stuff Is Made Of: The Most Astounding Papers of Quantum Physics—and How They Shook the Scientific World, edited by the late Stephen Hawking. For some time, I hesitated to wear the T-shirt because I found its message to be problematic. My feelings toward this very thoughtful gift have to do with NIST’s experiments in quantum foundations, the world’s most random numbers, and why I happily wear the T-shirt now.

UNIVERSITY PARK Pa. — A precise, chemical-free method for etching nanoscale features on silicon wafers has been developed by a team from Penn State and Southwest Jiaotong University and Tsinghua University in China.

In standard lithography, a photosensitive film is deposited on a silicon wafer and a pattern called a mask is used to expose certain portions of the film. Then, chemicals — such as a potassium hydroxide solution — etch patterns into the silicon. Further steps are required to smooth out the roughened surface.

by A'ndrea Elyse Messer

UNIVERSITY PARK, Pa. — Perfection is not everything, according to an international team of researchers whose 2-D materials study shows that defects can enhance a material's physical, electrochemical, magnetic, energy and catalytic properties.

"Electronic devices, like transistors, are usually made from relatively bulky stacked layers of metal, oxides and crystalline semiconductors," said Shengxi Huang, assistant professor of electrical engineering, Penn State. "We would like to make them with two-dimensional materials so that they can be faster, smaller and more flexible."

Researchers at the National Institute of Standards and Technology (NIST) continue to pioneer new antenna measurement methods, this time for future 5G wireless communications systems.

NIST’s new Large Antenna Positioning System (LAPS) has two robotic arms designed to position "smart" or adaptable antennas, which can be mounted on base stations that handle signals to and from huge numbers of devices. Future 5G systems will operate at higher frequencies and offer more than 100 times the data-carrying capacity of today’s cellphones, while connecting billions of mobile broadband users in complex, crowded signal environments.

Researchers at the National Institute of Standards and Technology (NIST) have developed a method for generating numbers guaranteed to be random by quantum mechanics. Described in the April 12 issue of Nature, the experimental technique surpasses all previous methods for ensuring the unpredictability of its random numbers and may enhance security and trust in cryptographic systems.

Search http/News

Arizona Free Press

Click on "Latest Threads" above
for additional articles.

Physical Address

We are in the process of additions and revisions. Your patience is appreciated.

Mailing Address

P.O. Box 677
Roosevelt, AZ 85545